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T H E  T E M P E R A T U R E  D I F F E R E N C E  O F  T H E  P H A S E S  

Yu. S. Teplitskii and I. I. Markevich UDC 66.096.5 

Based on the solutions of the "internal' and "externaF problems of a gas flow in a granular bed, expressions 

are obtained for calculating the interphase heat transfer coefficient and the degree of gas flow nonuniformity. 

As is known [1 ], the use of the one-temperature model of a disperse medium 

(c:p:~ + Csps (I - ~)) ~ + (+__ C:p:u +_ Csps us) ~ = ;~e:-- 
3t Oz 

O2T (1) 

may substantially distort the actual picture of heat transfer in many nonstationary processes associated with heat 
treatment of disperse materials. In such cases it is more effective to use two-temperature models that take into 
account the temperature difference of the phases and interphase heat transfer. 

Under the assumption of isotropy of the thermal conductivities of the phases and thermally fine particles 
the energy equations may be written in the form 

OTf 02Tf 6A (1 - e) 
c:p:~ +_- C::,:u OT:= ,~: + ~(Ts- T?, 

Ot Oz ~ x ~  d 

(2) 

OT s OT s 02Ts 6A (1 - e) 
C s p  s (1 - ~) +- G p s  us - -  = ~s ~ ( T s  - T i )  . 

Ot Oz Ox 2 d 
(3) 

System (2), (3) contains four a priori unknown coefficients that determine the intensity of conductive and 

interphase heat transfer: 2f, ks, A, and c~. With this many parameters we must naturally seek reasonable 
simplifications to reduce this number to a minimum. 

In [2, 3 ] the convective component of the known thermal conductivity of the granular bed ;tel was used for 

Af, and its conductive component (independent of the relative velocity of the phases). A similar procedure was used 

in [4 ], where an infiltrated granular medium was considered to consist of the bed skeleton (particles and impassable 

zones near the points of contact of them) and continuous-flow zones. In [5, 6 ], 2fwas equated to 2el, and the contact 

thermal conductivity 2ct for the skeleton of particles, determined from measurements of the thermal conductivity 
of the filling in a vacuum, was used for As. 

Extensive literature is devoted to the determination of interphase heat transfer coefficients (see the surveys 

JLn [7 -9  ]). Although the scatter of experimental data is great, it is reliably established that heat transfer coefficients 
may be divided conventionally into two groups: at Re > 100, when the measured a values approximately follow 

known dependences [7, 9 ] for a single fixed particle; at Re < 100, when the a values are sometimes several orders 
of magnitude lower than for a single particle (see Fig. 1). The values of the first group are called "actual," and 

those of the second group are called "effective" [9 ]. So far, no sufficiently satisfactory quantitative explanation 
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Fig. 1. Dependence Nu = f (Re) for an infiltrated granular bed: 1) Nue[ = 

0.01Re 1.57 (a generalization of the experimental data in the hatched region); 

2) calculation by (7); 3) calculation for a single sphere by the equation Nu 

= 2 + 0.6Rel/2prl/3; 4) calculation by (7b); 5) calculation by (7a). 

exists for the distinctive heat transfer "crisis" at Re = 100 (qualitative arguments may be found in [8, 9 ]). It is 

noted that the substantial decrease in a in the range R < 100 is caused by two main factors, namely, the neglect 

of the effective thermal conductivity of the gas and nonuniform laminar gas flow past the particles, which leads to 

a decrease the active interphase surface. The "actual" a n d  "effective" heat transfer coefficients are considered 

theoretically in [5, 10]. 

The coefficient A - the part of the total interphase surface that participates in heat transfer - has hardly 

been studied. In the literature [8 ] only qualitative estimates of this parameter are reported. Therefore in [2-6 ] A 

is simply assumed equal to 1. 

The present work is devoted to determining the coefficients a and A entering Eqs. (2) and (3) and to 

investigating the effect of 2el and A on the effective interphase heat transfer coefficient in order to have grounds 

for using some particular value of it in describing nonstationary heat transfer processes in a system. 

We shall analyze the regularities of interphase heat transfer on the basis of the "internal" problem (a gas 

flow in pore channels). We assume the diameter of the equivalent channel to be [1 ]: Deq = 2R = 2de/3(1 - e); 

its height is evaluated from the crookedness of pores k: H = kd. We assume that k = 1.5 [1 ].* 

The problem on interphase heat transfer is formulated mathematically as 

020 + 1 O0 + - P e 0 0  = 0 ,  

or/2 r/ or/ o~ 2 o~ 

oo (~, o) 
or/ = o ,  8(~, 1)= 1, 

(4) 

Such assumptions actually correspond to the absence of the stagnant zones that occur due to local nonuniformities 

of the gas flow, and they correspond to A = 1. 
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0~ + Pe 0 (0, ~/) = 0 ,  
oo (1, '1)  = o 

O~ 

0 = (T  - T O ) I ( T  w - TO). 

(5) 

The expression for the effective thermal conductivity of a gas in the interpore space is given in the standard form 

2 t ) = 2 t 2 + B C f p f u d / e .  The coefficient B is assumed equal to 0.0061 in accordance with the expression 

+ 0.0061C/pj u d / e  for the thermal conductivity of a gas film near a particle surface. This expression is a 

result of processing experimental data on external heat transfer within the framework of our two-zone model [11 ].* 

System (4), (5) was solved numerically by a time-dependent method [12]. The nonstationary problem 

corresponding to this system was approximated by an implicit scheme realized by the method of matrix factorization 

[12 ], which was absolutely stable in the given case. The interphase heat transfer coefficient was calculated by the 

formula 

o ~  m 

h 
OT 2f (6) 

T w - T O Or r = R "  

Results of numerical calculations together with known experimental data on heat transfer in motionless granular 

beds reported in [7 -9]  are shown in Fig. 1. The numerical solution is approximated in the form 

Nu = 2 + 0.042 R U e .  (7) 

Formula (7) at high Re numbers, when the first summand may be neglected, agrees very well with the formulas 

of Timofeev [13] Nu = 0.042 Re/e and Gol'dshtik [5] Ni = 0.043 Re/e. 

Taking into consideration the absence of experimental data on a at low Re in the literature, it is expedient, 

in order to increase the reliability of the theoretical results, to have Nu values based on the "external" problem of 

a flow past the particles in a bed. An approximate solution, but one entirely suitable for our purposes, may be 

obtained using an expression obtained earlier [14 ] for the heat transfer coefficient of a vertical cylinder of diameter 

D >> d in an infiltrated bed. For this, it is sufficient to consider the asymptotics of the solution at D --- d (the height 

of the cylinder was also assumed equal to d). In accordance with the recommendations given in [ 151, the thickness 

of the boundary gas film was assumed equal to O.05d. With regard for the remarks made, we derive the following 

relation for evaluation of the interphase heat transfer : 

Nu = 2k00 k0 ~/pes + 0.1 Pe; /K* K*, 

1 + 0. I k ~ pvr~-e~ K* 

(7a) 

where 

�9 �9 0 ) pe s RePr  . Per RePr  ,l 

= T  4 k k ~ ' 2e k o 2 

k 0 2ef K* K 1 (1.1%/Pes)/K 0 (1.1%/Pes) _ _  . i �9 

h '  
2f 

Such a choice of the value of ~ in the interpore space will obviously result in somewhat underestimated values of 
a (see below). 

Note that formula (7a) is obtained for high Re. The possibility of using it for calculations at low Re is substantiated 

in [14, Fig. 4b ]. 
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Calculations by (7a) are also given in Fig. 1. The sought function Nu(Re) was obtained by the least-square method. 

In doing so, at low Re expressions (7), (7a) and known formulas for heat transfer of a single sphere were used as 

"experimental," and at Re > 100 the requirement of maximum similarity to the known dependences Nu = 2 + 1.8 
Re~/2Pr I/3 [7 [ and Nu = 0.4(Re/e2/apr 1/3 [9 ] was achieved. 

The final form of the formula for the interphase heat transfer coefficient is 

Nu = 2 + 0.56 Re ~ .  
(7b) 

Correlation (7b) is used below to determine the coefficient A entering (2) and (3). 

We now consider, as a model, a stationary heat transfer process of a gas-infiltrated granular bed in terms 

of two-temperature system (12), (3). As in [5, 6], we assume that 2f = ~.ef, 2s = 2ct. According to [16], 2ct may 
k k be neglected at 2s/;t~ < 40. In such an approximation, model (2), (3) acquires the form 

d T f  d2Tf  6A (1 - e) 
= 2ef--~-z2 + a (T s- Tf) , C f p f  u dz  d 

(8) 

a T  s 6A (1 - e) 
Cs Ps us dz  - d o: (T  s - T f ) .  (9) 

System (8), (9) describes a widely used process of gradientless heating (cooling) of a disperse material moving 

opposite to a gas. The single unknown parameter A, determining the active interphase surface, may be found by 

comparing the "theoretical" temperature distributions, obtained from solution of (8), (9), with the "experimental" 

profiles obtained from the equations 

OTf 6A (1 - e) aef (Ts _ Tf) (10) 
C : : u  Oz - d 

OT s 6A (1 - e) (11) 
CsPs Us 0-Y = -  d '~ei(Ts - T/ ) ,  

which, as is known [7-9] ,  are used to determine the effective heat transfer coefficient from the experimental 

temperature profiles of a gas. 
We generalized rather numerous experimental data [7-9]  on aef entering (10) and (11) in the form 

Nuef = 0.01 Re 1"57 , Re _ < 100 . (12) 

The values of CZef calculated by (12) were used to obtain the "experimental" temperature profiles of the 

phases by (10), (1I). 
We now write systems (8), (9) and (10), (11) with the corresponding boundary conditions in dimensionless 

form: 

P 9  d~ - dZOZ + APe* (0s - 0:) 
d~ d~ z 

(13) 

dO s 
Pe s - ~  = APe* (0 s - Of), 

(14) 

0 s (1) = 1, (15) 
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- dOf/d~ + eefOf = 0,  ~ = 0;  dOf/d~ = 0,  ~ = 1 (the Dankwerts conditions) (16) 

and 

aos - g  = &(o, - o,,), (17) 

where 

dO s 
de  = P~ (Os - 0S), 

G (1) = 1, 

o r (o) = o .  

For systems of a gas and solid particles the solutions of (13)-(16) and (17)-(20) are as follows: 
for system (13)-(16) 

Of= 1 + Byexp (k3~), 0 s=  1 + B sexp (k3~), 

A Pe* ) Wes +Pe, / ' - V  r A Pe* 
Pe s 

2 

P 9  4+ A Pe* ) , 

B s = Pe/ / (  kaka - Pefka) ; Bf = "kaBs ; "k3 "= (A ee* - k a P%)/A ee* ; 

for system (17)-(20) 

(18) 

(19) 

(20) 

(21) 

Of= 1 - e x p  [(/3 s - / 3 f ) ~ ] ,  0 s= 1 - / 3 ,  exp [(/3 s - / 3 f ) ~ ] .  (22) 

A comparison of "theoretical" (21) and "experimental" (22) functions was made by comparing the exponents.* The 
requirement of their equality allowed a simple formula to be obtained for determining the sought parameter A: 

(23) ~s -/3~)2_ ~,  _ &) v9 
A~_~ 

Pef ~3s - f i r ) "  
Pe* 1-P--%es+"-Pes 

The values of A calculated by (23) were approximated by the following dependences: 

(24) 

A = 0.006 Re 132 Re < 10 ' A = 0.027 Re ~ 

1 0 < R e ~  100; A =  1, R e >  100. 

In order of magnitude, the values of A are fairly consistent with estimates obtained by S. S. Zabrodskii [8 ] for a 
fluidized bed using the microbreak-out model of excess gas. At Re > 100(the region of a sufficiently developed 
turbulent regime) the nonuniformity of gas flow distribution no longer exists. Under these conditions, as 

Because of a fundamental difference in boundary conditions (16) and (20) it is impossible to demand the 
coincidence of the functions Of themselves that are calculated by (21) and (22). Their difference is particularly 
great at ~ = 0 for low Re (low Per). 
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Fig. 2. Effective interphase heat transfer coefficients: 1) Nuef = 0.01Re 1s7 
r 

(generalization of the experimental data); 2) Nu'e'f by Eq. (26); 3) Nuef by 
(25); 4) Nu by (7b). 

calculations show, the conductive heat transfer is negligible compared to the convective heat transfer, and model 

(13)-(15) turns, in fact, onto (17)-(20). In conformity with this, at Re > 100 any difference between the coefficients 

a and aef disappears. 

Within the framework of the approach adopted in the present work, it is easy to clarify how he/: and A, 
separately, influence the effective heat transfer coefficient. 

Neglect of Conductive Heat Transfer {~ef = 0). In this case the process is described by Eqs. (10), (11) 

into which A, aef must be substituted for the coefficient aef. The requirement of equivalence gives a formula for 
calculating ad: 

=  e/A . ( 2 s )  

The values obtained for the effective heat transfer coefficient aef describing the interphase heat transfer in 

the system where the conductive heat transfer is neglected (the effect of the nonuniformity of the gas flow is not 
accounted for), are shown in dimensionless form in Fig. 2c. 

Neglect of Local Nonuniformmities of the Gas Plow (A = 1). The heat transfer process is described by 

system (8), (9), where the exchange term has the form 6(1 - e)ae)(Ts - Tf) /d.  The requirement of equivalence of 
(8), (9) to the new system yields 

aef = Aa .  (26) 

r l  

The values of aef are also shown in Fig. 2. They describe the interphase heat transfer process when local 

nonuniformmities of the gas flow are not taken into consideration. As is seen from Fig. 2, the sensitivity of system 
p t  

(2), (3) to )~ef and A is different. The neglect of Aef decreases a only insignificantly a - the coefficient Ctef. On the 
contrary, disregard of the parameter of gas flow nonuniformity A, leads to a substantial (attaining three orders, at 

t 

small Re) decrease of a,  i.e., the coefficient CCef. 
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The results obtained make it possible the systematize quantitative regularities of interphase heat transfer 

in infiltrated granular beds. They allow a proper choice of the governing parameters for calculating nonstationary 

heat transfer using the two-temperature models. 

N O T A T I O N  

A, degree of gas flow nonuniformity (at A = 1 the flow is completely uniform) ; C, specific heat; d, particle 
diameter; Ko, K1, modified Bessel functions of the second kind of the zeroth and first order; L, ~eight of the 

granular bed; Nu = a d / 2 ~ ,  Nusselt number; Pef = C f p f u L / 2 e f  , Pe s = CsPsUsL/2ef ,  Pe = a *L ~2el, Pe = 
C f p f u g 2 / 2 h e H ,  Peclet numbers; Pr = Cfrlf /2~,  Prandtl number; Re = (u + us)d /v f ,  Reynolds number; u, Us, gas 
and particle velocities based on the empty cross section of the apparatus; t, time; T, temperature; TO, T 0, inlet 

t e m p e r a t u r e s  of the  gas and  the  par t ic les ;  xi, coord ina tes ;  a, in terphase  heat  t ransfer  coefficient; 

a* = 6(1 " e ) a / d ,  fls = ae fL/CsPsUs,  flf = C~efL/CsPsUs, fl* = fls/flf;, 0 = (T  - TO)/(TO - TO); ~ = z /L ;  r 1 = r /R;  
e, porosity; r ,  thermal conductivity; W, dynamic viscosity of the gas; vf, kinematic viscosity of the gas; p, density. 

Subscripts and superscripts: s, particles; f, D, gas; el, effective; ct, contact; w, channel surface; k, molecular; h, 
pertaining to the gas film. 
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